Semi - Lagrangian multistep exponential integrators for index 2 differential algebraic system
نویسنده
چکیده
Implicit-explicit (IMEX) multistep methods are very useful for the time discretiza-tion of convection diffusion PDE problems such as the Burgers equations and also the incompressible Navier-Stokes equations. Semi-discretization in space of the latter typically gives rise to an index 2 differential-algebraic (DAE) system of equations. Runge-Kutta (RK) methods have been considered for the time discretization of such DAE systems. However, due to their implicit nature, they generally have a drawback over the IMEX multistep methods in terms of computational costs per step. In this paper we propose an exponential integration method for index 2 DAEs of a special class that includes the type arising from the incompressible Navier-Stokes problem. The methods are based on the backward differentiation formulae (BDF), belong to the class of IMEX multistep methods and are unconditionally stable.
منابع مشابه
Lagrange-d’Alembert SPARK Integrators for Nonholonomic Lagrangian Systems
Lagrangian systems with ideal nonholonomic constraints can be expressed as implicit index 2 differential-algebraic equations (DAEs) and can be derived from the Lagrange-d’Alembert principle. We define a new nonholonomically constrained discrete Lagrange-d’Alembert principle based on a discrete Lagrange-d’Alembert principle for forced Lagrangian systems. Nonholonomic constraints are considered a...
متن کاملNorges Teknisk-naturvitenskapelige Universitet Expint — a Matlab 1 Package for Exponential Integrators
Recently, a great deal of attention has been focused on the construction of exponential integrators for semi-linear problems. In this paper we describe a matlab package which aims to facilitate the quick deployment and testing of exponential integrators, of Runge–Kutta, multistep and general linear type. A large number of integrators are included in this package along with several well known ex...
متن کاملA matlab 1 package for exponential integrators
Recently, a great deal of attention has been focused on the construction of exponential integrators for semi-linear problems. In this paper we describe a matlab package which aims to facilitate the quick deployment and testing of exponential integrators, of Runge–Kutta, multistep and general linear type. A large number of integrators are included in this package along with several well known ex...
متن کاملSemi-Lagrangian Runge-Kutta Exponential Integrators for Convection Dominated Problems
In this paper we consider the case of nonlinear convectiondiffusion problems with a dominating convection term and we propose exponential integrators based on the composition of exact pure convection flows. The main reason for developing this type of methods is that as it turns out they can be applied to the numerical integration of the considered PDEs in a semi-Lagrangian fashion. SemiLagrangi...
متن کاملSemi-Lagrangian exponential integrators for the incompressible Navier-Stokes equations
preprint numerics no. 7/2011 norwegian university of science and technology trondheim, norway Direct applications of high order DIRK-CF methods as presented in [7] to the incompressible Navier-Stokes equations were found to yield a loss in order of convergence. The DIRK-CF methods are exponential integrators arising from the IMEX Runge-Kutta techniques proposed in [1], and are semi-Lagrangian w...
متن کامل